

GS1 Technical XML User Guide
to Release 2.0

version 2.0
May 2005

 2

Document Summary

Document Item Current Value
Document Title GS1 Technical XML User Guide to Release 2.0
Date Last Modified 2005-05-10
Current Document Version 2.0
Status For Publishing
Document Description
(one sentence summary)

This document provides users with the technical guidelines
to the structure and design of the EAN.UCC XML standard
release 2.0

Acknowledgements

Name Organization
Dipan Anarkat GS1 HO
Marilyn Dodd 3M Company
John Duker Procter & Gamble Company
Anders Grangard GS1 France
Anthony Hoang WWRE
Ewa Iwicka GS1 HO
Christian Przybilla GS1 Germany
Sylvia Webb GEFEG US

Log of Changes in version 2.0

Section # Summary of Change
1 Added FAQ 12 referring to the use of time-related data types
3 Updated website addresses hosting EAN.UCC XML standards

8.1 Added section explaining the way of handling date and time in EAN.UCC XML
standards

8.1.1 Added section explaining the use of milliseconds
8.1.2 Added section explaining the use of time zones

10 Added description and usage of ‘message’ component introduced in the version
2.0.2 of the EAN.UCC XML standards

10.1.2 Extended explanation of the Transaction layer functionality, modified examples
(the misleading Order example has been replaced by Trade Item)

10.2.3.3 Added section explaining the Link Command functionality

Disclaimer

“Whilst every effort has been made to ensure that the guidelines to use the EAN.UCC
standards contained in the document are correct, GS1 and any other party involved in the
creation of the document HEREBY STATE that the document is provided without warranty,
either expressed or implied, of accuracy or fitness for purpose, AND HEREBY DISCLAIM any
liability, direct or indirect, for damages or loss relating to the use of the document. The
document may be modified, subject to developments in technology, changes to the
standards, or new legal requirements.“

 3

Table of Contents

0 SCOPE OF THE DOCUMENT..5

1 FREQUENTLY ASKED QUESTIONS ..5

2 GENERAL PICTURE HOW TO USE THE XML STANDARD......................9

2.1 PREREQUISITES FOR USING XML ..9

2.2 GS1 SET OF XML STANDARDS..10
2.2.1 IMPLEMENTERS PACKET...12
2.2.2 BUSINESS MESSAGE STANDARD (BMS)......................................12

2.3 MAPPING FROM UML TO XML ...12

3 GS1 XML PUBLICATION STRATEGY ..15

4 GS1 NAMESPACES ..16

4.1 GS1 NAMESPACE STRUCTURE...16

4.2 GS1 NAMESPACE PREFIX ..16

4.3 XML SCHEMA NAMESPACE AND PREFIX ..17

5 GS1 XML VERSIONING STRATEGY ..17

5.1 MINOR VERSIONS ...17

5.2 MAJOR VERSIONS ..18

5.3 CONTEXT CATEGORIES SPECIFYING VERSION NUMBERS18
5.3.1 VERSION NUMBERS IN XML SCHEMAS..18
5.3.2 VERSION NUMBERS IN THE BUSINESS DOCUMENTS – XML
INSTANCE ...19
5.3.3 VERSION NUMBERS IN THE BUSINESS DOCUMENTS AND IN
THE STANDARD BUSINESS DOCUMENT HEADER...............................19

6 CONTEXT...20

6.1 CONTEXT CATEGORIES ...20

6.2 REPRESENTING CONTEXT IN EAN.UCC XML STANDARDS.............20

7 CODE LISTS ..21

7.1 EXTERNAL CODE LISTS ...21

7.2 INTERNAL CODE LISTS ..21

 4

7.2.1 INTERNAL CODE LISTS IN CONTEXT..22
7.2.2 INTERNAL CODE LIST VERSIONING ...22

8 XML BUILT-IN TYPES ...23

8.1 HANDLING DATE AND TIME...24
8.1.1 USE OF MILLISECONDS ...25
8.1.2 USE OF TIME ZONES ..25

9 STANDARD BUSINESS DOCUMENT HEADER.......................................26

10 MESSAGE LAYER...26

10.1 TRANSACTION...28
10.1.1 TRANSACTION STRUCTURE..28
10.1.2 TRANSACTION FUNCTIONALITY ...29

10.2 COMMAND..31
10.2.1 DOCUMENT COMMAND..32
10.2.2 DOCUMENT IDENTIFICATION COMMAND33
10.2.3 LINK COMMAND ..34

10.2.3.1 Link Header ...34
10.2.3.2 Link Operand...34
10.2.3.3 Link Command functionality..36

11 DOCUMENT LAYER ..37

11.1 PROXY FILES ...37

11.2 BUSINESS DOCUMENTS...37

11.3 COMMON LIBRARY ...38

12 EXTENSION MECHANISM ..38

12.1 GENERAL EXTENSION COMPONENT..38
12.1.1 VALIDATION OF THE EXTENSION COMPONENTS.....................39
12.1.2 QUALIFICATION OF THE EXTENSION COMPONENTS...............39

13 XML TOOLS...39

14 CHECKLIST FOR SOLUTION PROVIDERS ...40

APPENDIX: MAJOR CHANGES OF DESIGN BETWEEN RELEASE 1.3.1
AND 2.0 ...42

 5

0 SCOPE OF THE DOCUMENT

This "GS1 Technical XML User Guide to Release 2.0" covers only technical
aspects of the EAN.UCC Business Message Standard Release 2.0. It does
not explain the technical details of any earlier releases. The major differences
between the current one (2.0) and the previous release (1.3.1) are listed in an
Appendix.

Should you need further information about the release 1.3.1, please refer to
the document "How to use EAN.UCC XML Standards version 1.3.1"

"GS1 Technical XML User Guide to Release 2.0" does not contain any
guidelines for use of the particular business messages in specific business
processes. This aspect is covered in the Business Message Standards,
separately for each business message.

1 FREQUENTLY ASKED QUESTIONS

1. What are the prerequisites for using XML?

Answer: In its simplest configuration, you need a software tool to edit and
validate the XML documents. The software tools can be either embedded
into the application used to view the XML document or standalone ones.
Although XML documents can be edited with any word processor, using a
dedicated tool significantly simplifies it and reduces the number of errors.
The validating tool verifies whether the XML document – the actual
business message – conforms to the XML schema – the standardised
structure and content definition of the message. For more details see:
Prerequisites for using XML.

2. If I want to use the EAN.UCC XML standards, what documents should I
download and how are they related?
Answer: The description of the message and its full UML model are
presented in the Business Message Standard (BMS) document. The
actual XML schemas and the example instance files and their HTML
representation are contained in the Implementer's Packet. Both the BMS
and the content of the Implementer's Packet have to be downloaded and
analysed prior to any implementation attempt. More details concerning the
set of standard documents can be found in: GS1 set of XML standards.

3. What questions should be asked to software providers when purchasing a

product to support EAN.UCC XML messages?
Answer: All companies that are interested in implementing the EAN.UCC
XML standards and are planning to buy software tools to support it, should
make sure that the product they have chosen is suitable for such
implementation. The Checklist for Solution Providers can facilitate this
verification.

4. What is the relationship between the schema and the BMS? Why are the
restrictions on data in BMS different from those in the schema?
Answer: The Business Message Standard document is based on the
actual user requirements. It is a base for the XML standard development.

 6

However, while building XML schemas, the developers have to conform to
the data types built in XML specifications and included in every XML-
aware application. In addition, if possible, they try to enable reusability of
definitions, in order to facilitate processing and lower the costs of
application development. Therefore, schemas tend to be less restrictive
than the BMS. In case of any discrepancies, i.e. whenever the schema
definition is more permissive than the BMS, the latter one should be used
as a base for populating the business messages with business data. For
more detailed information see: GS1 set of XML standards.

5. What is the GS1 strategy for publishing the XML standards? When do the
new versions become official and when can they be implemented?
Answer: The EAN.UCC XML standards are first published as a draft
version, after their technical approval. At this stage the standards can be
used as a base for testing and piloting. The messages become the final
standard after they are ratified by the GS1 Management Board. After this
ratification they can be used for the final implementation. For more details
on the approval and publication process, refer to: GS1 XML Publication
Strategy.

6. What is the GS1 strategy towards the XML standards versioning? Are the
new versions compatible with the old ones?
Answer: Beginning from the Release 2.0, all changes in the EAN.UCC
XML standards are reflected either as major or minor versions. All minor
versions are backward compatible within the same major version. Thus,
they can reflect only such changes that allow the message recipient to
successfully validate a business document based on an old schema
against a new schema. Major versions are applied if this compatibility is
broken. For further explanations concerning backward compatibility and
reflecting versions in schemas and instance documents, see: GS1 XML
versioning strategy.

7. What is context and how is it supported in the EAN.UCC XML standards?
Answer: Context reflects the circumstances in which the business
information exchange occurs and on which the information needs depend.
Those circumstances are classified in context categories. In every
information component there are certain attributes valid in any situation
and other dependent on business process, industry sector or geographical
location. Those common attributes are context-independent and the
different ones are context-specific.
The context categories in EAN.UCC XML standards are represented in
namespaces. For more details please refer to Context.

8. How are namespaces used in EAN.UCC XML standards?
Answer: In the EAN.UCC XML standards, namespaces are used for
reflecting context of the message and the major version number. More
information about the namespace structure, its use and standard prefixes
can be found in: GS1 Namespaces.

9. Are the namespace prefixes provided by GS1 mandatory, or can the user
provide their own prefixes?

 7

Answer: In the EAN.UCC System it is mandatory to use the standard
namespace prefixes, in order to support the global interoperability of the
standards. For more details see: GS1 namespace prefix.

10. How are the code lists represented in EAN.UCC standards? How can new
codes be added?
Answer: The code lists that are developed and maintained outside of the
EAN.UCC System – referred to as the external ones, are only referenced
in the XML standards. Their content is not copied to the EAN.UCC
schemas and the users have to load them to their applications at their own
discretion.
The internal code lists – developed and maintained by GS1 – are
represented in the separate XML schemas. Each code list can be
versioned independently from the other schemas, so adding new codes is
possible just by changing the minor version of the schema. The list
containing new codes is still backward compatible with earlier schemas
within the same major version. Detailed explanation can be found in: Code
lists.

11. How are the XML built-in types used in EAN.UCC Schemas? Why are they
sometimes different from data types represented in the BMS?
Answer: EAN.UCC standards use the W3C defined data types wherever
possible. Currently 10 built-in types are used. In Business Message
Standards, which contain the UML representation of the business
document, some of the data types may be presented in a different format
than the one used in the schema. This is due to the fact that the UML
notation is independent from the syntax to which it is finally mapped. For
more information about the W3C defined data types used in the EAN.UCC
XML standards, please refer to XML Built-in Types.

12. How to handle the date and time related data in case of different time
zones? What is the maximum precision of time related data types in
EAN.UCC XML Standards?
Answer: The time zone information for non-UTC times within EAN.UCC
system must be expressed by specifying the difference between the local
time and UTC. Besides, ‘time’ and ‘dateTime’ data types allow use of
additional digits increasing the precision of fractional seconds. In
EAN.UCC standards 3 precision digits are used to denote the miliseconds.
For more details on using the time related data types please refer to
Handling Date and Time.

13. What is the Standard Business Document Header and how is it used in the
EAN.UCC schemas? How does it relate to the AS2 Envelope used in
previous releases?
Answer: The Standard Business Document Header (SBDH) is the
UN/CEFACT standard, containing information about the routing and
processing of the business document. In the EAN.UCC XML 2.0
architecture, the SBDH replaces the Envelope layer used in previous
releases of XML standards. For more information, please refer to Standard
Business Document Header.

 8

14. What is the functionality of the Transaction element in the EAN.UCC
standards?
Answer: Transaction element enables sending multiple documents as one
interchange. The transaction element offers functionality of processing the
group of documents together. If one of them fails, all of them will be
discarded. More detailed information about the transaction layer are
provided in Transaction.

15. How can I express the relationship between two objects that need to be
linked, e.g. SSCC of the pallet and cases placed on that pallet, or between
the stores and the distribution centres?
Answer: Two objects can be logically linked together by the use of the Link
Command. It provides the possibility of establishing parent-child or peer
relationships between several documents. For more information about this
and the other commands used in the EAN.UCC standards, please refer to
Command.

16. What is the functionality of the proxy schemas? Are they normative?
Answer: EAN.UCC standard business documents are defined using
multiple XML schemas. Because certain parsers do not support multiple
schema locations in the instance file, the proxy schema including and
importing all the required schemas is provided for every business
document. The proxy schema is not normative, it is developed to assist
some users. If a parser utilized by the user company supports multiple
schema locations, it does not have to be implemented. For more
information see: Proxy files.

17. How do I use the extension element in EAN.UCC XML schemas release
2.0? What can be placed there and what are the limitations and
implications for validation?
Answer: In the release 2.0 a new extension component has been
introduced. It is a placeholder in the form of the XML '##any' element.
Its validation is optional and if no schema definition for the extension
components is found, the validator will not report an error.
From the technical point of view, any content can be placed in the
extension element, but in order to maintain global interoperability, users
are advised to use only the information components approved within
GSMP. More details about the extension element and its validation can be
found in the Extension Mechanism.

18. What software tools can I use to process (edit, validate, transform) the
XML messages? Are there any free or low cost tools available for
companies beginning to work with XML?
Answer: There are a lot of different types of tools for processing XML,
available from many providers. Since many new ones are developed quite
frequently and the existing ones are constantly updated, it is better to
either make a search on the Internet to find the latest ones or consult the
specific provider's website for the most recent updates. The XML Tools
section provides some advice on the keywords which may facilitate such
search and lists the tools that are used for testing the correctness of the
EAN.UCC schemas.

 9

2 GENERAL PICTURE HOW TO USE THE XML STANDARD

2.1 PREREQUISITES FOR USING XML

The use of the XML standards requires certain software tools. In the simplest
case, these are an XML processor and validator.

The XML processor is usually included in the application used to view the
XML document. It verifies whether the XML file is well formed, which means
that it follows all the rules defined in the W3C recommendation for XML
syntax.

The validator checks whether the XML instance document conforms to the
XML schema. XML schemas contain definitions and structures which can be
used in XML instance documents. The instance documents contain the actual
data with their respective tags in the form of elements and their attributes.
Validating software compares the instance document to its schema. This
includes checking that the document contains only legal tags, if the data
conforms to the format specified in the schema, whether the structure of its
content is correct, etc. One schema can define multiple data representations,
contained in different XML instance documents. However, the content of all
those documents must remain within the limits and restrictions specified in the
schema.

Validating different instances of XML business documents with one schema

Validation can be used in business scenarios, where each of the trading
partners involved in the data exchange holds a copy of a standard schema
and validates each instance document sent or received. Of course, there have

VALID

ORDER
.....
<seller>CompanyA</seller>
<buyer>CompanyX</buyer>
<item>Product 1</item>
<quantity>20</ quantity>
.....

XML Instance 1 (Order message 1)

ORDER
.....
<seller>CompanyB</seller>
<buyer>CompanyY</buyer>
<item> Product 2</item>
<quantity>50</ quantity>
.....

XML Instance 2 (Order message 2)

ORDER
.....
<seller>CompanyC</seller>
<buyer>CompanyZ</buyer>
<item> Product 3</item>
<quantity>17</ quantity>
.....

XML Instance 3 (Order message 3)

ORDER SCHEMA
.....
<xsd:sequence>
<xsd:element name="seller" type="xsd:string"/>
<xsd:element name="buyer" type="xsd:string"/>
<xsd:element name="item" type="xsd:string"/>
<xsd:element name="quantity" type="xsd:integer"/>
</xsd:sequence>
.....

XML Schema for Order

VALIDATING
TOOL

VALID

VALID

 10

to be separate schemas for each type of business document, as they all have
different content and structure, e.g. Order, Despatch Advice, Invoice, etc.
Documents that are not valid (do not conform to the respective schema) are
rejected. At the sender's side, the validating software should be installed at
the document generation point. Thus, each business message is validated
and the possible errors can be corrected before sending.

Validating XML documents at the sender's side

At the receiver's side the validation takes place in the receiving point of the
exchange software, before any data is transmitted to the users' business
application.

Validating XML documents at the receiver's side

Usually, the XML tools combine the functionalities of parsing (extracting data
and tags from the native XML document), editing, checking well-formednes
and validating in one software unit, but there are also a number of self
contained validators and editors. For more information refer to the XML Tools.

2.2 GS1 SET OF XML STANDARDS

GS1 produces several work products as part of it’s standards for
implementation. Two of those work products are schemas and Business
Message Standards or BMS.

ORDER
.....
<seller>CompanyA</seller>
<buyer>CompanyY</buyer>
<item> Product 1</item>
<quantity>50</ quantity>
.....

VALID
XML MESSAGE

READY TO BE SENT

ORDER SCHEMA

.....
<xsd:sequence>
<xsd:element
name="seller"
type="xsd:string"/>
<xsd:element
name="buyer"
type="xsd:string"/>
<xsd:element name="item"
type="xsd:string"/>
<xsd:element
.....DATA FROM DATA BASE +

MESSAGE ASSEMBLY
SOFTWARE

VALIDATING TOOL
+ XML SCHEMA

ORDER
.....
<seller>CompanyA</seller>
<buyer>Company</buyer>
<item> Product 1</item>
<quantity>50</ quantity>
.....

VALIDATING TOOL
+ XML SCHEMA

ORDER SCHEMA
.....
<xsd:sequence>
<xsd:element name="seller"
type="xsd:string"/>
<xsd:element name="buyer"
type="xsd:string"/>
<xsd:element name="item"
type="xsd:string"/>
<xsd:element
name="quantity"
type="xsd:integer"/>
</xsd:sequence>

VALID MESSAGE PASSED ON TO
RECEIVER'S APPLICATION

FOR FURTHER PROCESSING
RECEIVED

XML MESSAGE

ORDER
.....
<seller>CompanyA</seller>
<buyer>Company</buyer>
<item> Product 1</item>
<quantity>50</ quantity>
.....

 11

Message standards allow users to convert business documents into a format
that can be electronically exchanged. XML business documents are referred
to as “messages”, or “documents”, and their format is defined in the EAN.UCC
XML data format message standards. The exchange of these business
documents is a component of overall e-Commerce.

EAN.UCC Schema describes the structure of an XML document. The purpose
of an XML Schema is to define the legal building blocks of an XML document,
EAN.UCC schema design allows developers to supply information embedded
within XML documentation.

EAN.UCC XML Standards are an organized suite of XML Schema Modules.
The current release is an architecture upgrade from the previous version. The
changes have been incorporated to take full advantage of all the features of
XML Schema specifications.

Business Message Standards are the artefact of the GSMP that documents
the formally approved standards for a business message. Each Business
Message Standard brings together the appropriate classes, attributes, and
values needed to fulfil the message objective. Specific definitions are provided
to ensure clarity around class, attributes, and values. Syntax constraints are
identified. The standard also includes the high level and detail level class
diagrams depicting the scope of the message, and the relationship of its
elements to each other. These diagrams allow parties to see data
relationships and to determine where and how to interface extensions to fulfil
a business function. Each standard contains a series of extracts from the
Global Data Dictionary. Relevant attribute items within a specific class name
are presented, identified by type and use.

In the BMS, the data formats restrictions can be different from those in the
schemas. This is due to the fact that in the schemas the reusable formats of
data types are used, to allow the application designers to reuse the length of
data fields. On the other hand, the BMS is based on the particular business
requirements, so it can specify the format of each data field, taking into
account the semantic meaning of data. Thus, when populating the business
message with business data, the BMS format should be used, while the
design of application data base should be based on the restrictions specified
in the schema. These differences appear mostly in data types defined using
the string restriction. For example in the Trade Item message:

BMS class and required number of
characters

Schema type required number of
characters

DescriptionShort: 30 DescriptionType: 1..70

FunctionalName: ..35 DescriptionType: 1..70

TradeItemDescription: ..143 LongDescriptionType: 1..1000

AdditionalTradeItemDescrition ..350 LongDescriptionType: 1..1000

 12

The EAN.UCC XML standards are published as a set of documents per
business message. Users need to download all of those documents to
implement a given message. Those documents include:

2.2.1 IMPLEMENTERS PACKET

The implementer’s packet is a ZIP file, comprised of all the XML files
necessary for validating a given XML message. It consists of:

- TableofContents.txt – a text file listing all the files included in the given
packet

- Instance File folder, containing one (out of many possible) sample XML
file for the message

- HTML Sample folder, containing the HTML representation of the sample
XML file from the Instance File folder

- Schemas folder, with the following content
o EAN.UCC folder – contains two subfolders:
� Common – includes schemas from the common library, with the

target namespace: xmlns:eanucc="urn:ean.ucc:2". These are
files that can be reused in many business documents, in any
context

� [Business Process Area name] – includes schemas from the
particular business area that are necessary to validate the given
business message. These schemas have the target namespace:
xmlns:[context-specific prefix]="urn:ean.ucc:[context value(s)]:2"
For more details see Context and Versioning

o SBDH folder – contains the Standard Business Document Header
schemas

o Proxy schema – for the particular business message

2.2.2 BUSINESS MESSAGE STANDARD (BMS)

This is the document containing Business Solution Document (BSD) for the
given message and the full UML model of the message.

The Global Data Dictionary report lists all the message model components
(classes, role names, enumerated values and attributes), their definitions,
cardinality, data field length and the title of the XML schema, where those
components are defined.

The purpose of the Business Message Standards is to provide the necessary
information to implement a particular message as a part of the EAN.UCC
System.

2.3 MAPPING FROM UML TO XML

The EAN.UCC XML standards are developed based on UML Class Diagrams.
A Class Diagram is mapped into an XML Schema or Schemas. Afterwards, a
sample XML file is developed, complying to data structures defined in the
schema and data definitions from the Global Data Dictionary. The Class
Diagrams with the model description and the sample XML file are then used to
create the Business Message Standard, published together with the set of
schemas.

 13

The general picture of EAN.UCC XML standards development

The actual mapping of the specific components of UML to XML is driven by
the XML syntax constraints and the chosen schema design model. However,
some general rules are applied whenever it is possible (exceptions from those
rules are rare and caused by the syntax constraints). The user does not have
to understand all the details and complexities of UML to XML mapping, but the
basic familiarity of key principles can be helpful in reading the EAN.UCC
standards.

The basic rules for mapping of UML components to XML can be illustrated by
the three examples below:

UML Class
Diagram

SellerID BuyerID

ORDER

 LineItem

Data
Dictionary

XML Body

Message
Header

<ItemID> <Quantity> <NetPrice>

XML schema
+

Business
Message
Standard

ItemID Quantity NetPrice

<BuyerID> <SellerID> <LineItem>

<ORDER>

 14

Example 1
Mapping of UML components as XML Complex Types and Elements

Example 2
Mapping of UML components as XML Simple Types and Attributes

CodeName
ACCEPTED
MODIFIED
REJECTED

PartyIdentification
(from Party Identification)

OrderPartyInformation

+seller

1

+billTo
0..1

+buyer

1

Mapped as xsd:complexType

Mapped as xsd:sequence

Mapped as xsd:element

Mapped as xsd:complexType in
an external reusable schema,
e.g. in Common Library

Mapped as minOccurs="0"
(maxOccurs="1" is a default in XML)

Not mapped – an element is mandatory
by default in an xsd:sequence

Response

responseStatus : ResponseStatusList Mapped as xsd:simpleType
xsd:restriction base="xsd:string"

Mapped as
xsd:attribute name="..."

No multiplicity specified in
UML – implied 1
For XML attribute mapped as
use="required"

Mapped as
xsd:enumeration value="..."

Response Status List

 15

Example 3
Mapping of UML components as XML Choice

3 GS1 XML PUBLICATION STRATEGY

The EAN.UCC XML standards have to undergo a strict formal approval
process in order to ensure their accuracy and integrity within the XML
messages themselves, as well as with the other EAN.UCC standards.

Once the XML messages are developed as a part of the Global Standard
Management Process (GSMP), they are reviewed by the Information
Technical Requirements Group (ITRG). After verifying that they meet
business requirements and are technically correct, the ITRG formally
approves them in a voting process. At that time, the standards receive a
DRAFT status and are published on the GSMP website. The draft messages
are published in order to allow users to analyse their content, test and plan
pilot implementations. The overall content of those messages is not likely to
be changed, but there may be the need to amend them before their final
release, so they should not be considered as being a base for real
implementation.

The standards become final when they are ratified by the GS1 Management
Board. This typically happens once or twice a year, depending on the number
of messages being developed and any major architectural changes requiring
new release of all the XML messages. Upon this ratification, the messages
are published as a final standard on the GSMP website. The ratified
messages can be used for the final implementation.

The standards from all the previous releases (from 1.0 to 1.3.1) can be
downloaded from the following link: http://www.ean-int.org/xml and the new
ones (2.0, 2.0.2 and 2.0.2) form: http://www.ean-
ucc.org/global_smp/ean.ucc_standards.html

NOTE: Beginning from the Release 2.0, all the minor versions of XML
schemas will be published as a part of a given major version of the standards.
The next major release will always contain only the latest minor versions
schemas of the previous release.

Mapped as xsd:choice

Mapped as minOccurs="0"
maxOccurs="unbounded"

SBDHApplicationReceiptAcknowledgement
statusType : ApplicationReceiptAcknowledgementStatusList
errorCount[0..1] : Integer_32Bit

TransactionApplicationReceiptAcknowledgement
statusType : ApplicationReceiptAcknowledgementStatusList
errorCount[0..1] : Integer_32Bit

0..*

CommandApplicationReceiptAcknowledgement
originalCommandType : DocumentCommandTypeList
statusType : ApplicationReceiptAcknowledgementStatusList

0..*

<<choice>>
<<choice>>

 16

4 GS1 NAMESPACES

4.1 GS1 NAMESPACE STRUCTURE

The namespaces in GS1 reflect the context and the major version of the
schema components. The GS1 namespaces have the format of the Uniform
Resource Names (URN). All URNs have the following structure:
 <URN> ::= "urn:" <NID> ":" <NSS>
where :
<NID> is the Namespace Identifier
<NSS> is the Namespace Specific String.

In all the GS1 namespaces, “ean.ucc” is used for the NID. The NSS of all
URNs assigned by GS1 have the following hierarchical structure, reflecting
the basic context categories and major version number:

urn:ean.ucc:_____:_____:_____:_____
 BP IC GP Major Version

where:
BP – Business Process
IC – Industry Classification
GP – Geopolitical Context

Note: NSS in GS1 namespaces is case-sensitive, even though in the RFC
2141 is specified as not sensitive.

Every component has all the context categories defined – either specific,
global or all. The namespace does not specify the context category if it is
global. For example, a component that is common across all geographical
regions and industry classifications, within the Global Data Synchronization
Network (GDSN) Business Process has the following namespace:
gdsn="urn:ean.ucc:gdsn:2"

4.2 GS1 NAMESPACE PREFIX

EAN.UCC XML schemas do not use any default namespace. The GS1
information components must be assigned to a namespace that reflects the
context it was defined in. This namespace (context) should be explicitly
specified for each component.

The GS1 standard specifies the standard namespace prefixes. Usually, they
are created from the name of the business process:
- "pay" for PAY process, e.g.: pay="urn:ean.ucc:pay:2"
- "align" for ALIGN process, e.g.: align="urn:ean.ucc:align:2"
- "plan" for PLAN process, e.g.: plan="urn:ean.ucc:plan:2"
- "deliver" for DELIVER process, e.g.: deliver="urn:ean.ucc:deliver:2"
- "order" for ORDER process, e.g.: order="urn:ean.ucc:order:2"
- "gdsn" for GLOBAL DATA SYNCHRONISATION process, e.g.:

gdsn="urn:ean.ucc:gdsn:2"
- "eanucc" for all schemas COMMON to all the contexts:

eanucc="urn:ean.ucc:2"

 17

The local extensions also have their own namespace and standard prefixes,
e.g. TradeItem components specific for Sweden use a separate namespace
and the "sw" prefix: sw="urn:ean.ucc:align:sweden:2"

Use of these standard namespace prefixes is mandatory in the EAN.UCC
System. Although, from the XML syntax point of view, any prefix can be used
as long as it points to the correct namespace, assigning non-standard prefixes
would compromise the global interoperability of standards.

In addition, certain mapping and processing XML tools are prefix sensitive and
use of non-matching prefixes by the business partners causes serious
validation and processing problems.

4.3 XML SCHEMA NAMESPACE AND PREFIX

For the XML schema components, the World Wide Web Consortium (W3C)
URL http://www.w3.org/2001/XMLSchema is used as the namespace. Again,
the prefix for that namespace has been standardised in the EAN.UCC System
and all the existing schema modules use xsd: for the XML Schema
namespace.

5 GS1 XML VERSIONING STRATEGY

Beginning from release 2.0, versioning of EAN.UCC XML schemas is no
longer coupled with the publication of EAN.UCC Business Message
Standards (BMS), as they were in previous releases (1.1, 1.3, 1.3.1 and 1.3.2)
This means that all schemas, including the ones for business documents, and
common library schemas do not necessarily hold the same version number.

Thanks to this policy, a change in the common library does not necessitate
the re-publishing of all schemas as it was the case in previous releases. It
also ensures the backward-compatibility between two successive releases of
EAN.UCC schemas.

Backward compatibility means that a message sender can create a business
document based on an old schema, despatch it to a recipient, who can
successfully validate it against a new schema.

5.1 MINOR VERSIONS

Minor versions are interim releases of an XML schema that contain only the
changes that are backwardly compatible with the existing version of this
schema.

Changes that can be incorporated in a Minor Version:

- Adding new optional elements or optional attributes
- Changing attributes cardinality from mandatory to optional
- Changing element multiplicity from old schema [0..1] to new schema

[0..*]
- Changing element multiplicity from old schema [1..1] to new schema

[1..*]

 18

- Adding a term to an enumerated list

5.2 MAJOR VERSIONS

Major versions are the releases of a suite of XML schemas that contain
changes not backwardly compatible with the existing suite of the same
schemas.

All the schemas within a given Business Process have the same major
version, to ease the implementation and ongoing maintenance of EAN.UCC
XML schema versioning. It means that if one schema in a suite of XML
schemas within a particular business process needs to be upgraded to the
next major version, all the schemas within that business process are
upgraded to the next major version. The business processes are defined by
business users during the business requirements gathering.

Changes that require incrementing the major version:

- Changing an attribute cardinality from optional to mandatory
- Adding a mandatory element
- Changing an attribute or element tag name
- Changing element multiplicity from old schema [0..*] to new schema

[0..1]
- Changing element multiplicity from old schema [1..*] to new schema [1]
- Changing the sequence of elements in a <xsd:sequence> tag

5.3 CONTEXT CATEGORIES SPECIFYING VERSION NUMBERS

5.3.1 VERSION NUMBERS IN XML SCHEMAS

The major version number of the schema is specified in the schema
namespace.

Example
urn:ean.ucc:gdsn:fmcg:1

The minor versions are reflected in the version attribute of the xsd:schema
element. For the ease of implementation, the internal schema version attribute
reflects the entire version (both major & minor) of the schema.

Example
<xsd:schema targetNamespace="urn:ean.ucc:gdsn:fmcg:2"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:ean.ucc:gdsn:fmcg:2" elementFormDefault="unqualified"
attributeFormDefault="unqualified" version="2.3">

This approach ensures backward compatibility. Due to the fact that the minor
versions are not reflected in the namespace of a schema, instance documents
can be validated against the older minor schema. In addition, any schemas
that ‘include’ this schema do not need to change because the target
namespace of the included components is the same as the target namespace
of the including schema.

 19

5.3.2 VERSION NUMBERS IN THE BUSINESS DOCUMENTS – XML
INSTANCE

Since the major version is specified in the namespace, the business
document (xml instance document) contains the major version by default.
However, the complete version also needs to be specified in the instance
document, as the application systems that receive the business documents
need to know what version the trading partners are using.

EAN.UCC business documents use the “documentStructureVersion” attribute
defined in the DocumentType complex type to reflect the complete version of
the business document schema, e.g. for the Order.xml message, the
“documentStructureVersion” attribute will reflect the version number of the
Order.xsd schema. The versions of the Common Library schemas are not
reflected in the instance document, as they do not affect the validation
process, due to their backward compatibility.
This type is defined as:

<xsd:complexType name="DocumentType" abstract="true">
<xsd:attribute name="contentVersion" type="eanucc:VersionType" default="2.0"/>
<xsd:attribute name="documentStructureVersion" type="eanucc:VersionType"
default="2.0"/>
 <xsd:attribute name="lastUpdateDate" type="xsd:date"/>
 <xsd:attribute name="creationDate" type="xsd:dateTime" use="required"/>
 <xsd:attribute name="documentStatus" type="eanucc:DocumentStatusListType"
use="required"/>
</xsd:complexType>

Please note, that starting from the release 2.0, the attribute
“documentStructureVersion” no longer has a fixed value, as it did in previous
releases. Instead, trading partners will specify the value of this attribute to
reflect the major and minor version they are using.

5.3.3 VERSION NUMBERS IN THE BUSINESS DOCUMENTS AND IN THE
STANDARD BUSINESS DOCUMENT HEADER

The Standard Business Document Header schema contains the 'TypeVersion'
element, which is the place holder for the version of the business document or
business documents sent with the one header. The SBDH specification
requires that all the documents sent with one header have the same version
number. To comply with this requirement, GS1 recommends that only the
major version number (the one specified in the namespace) of the business
documents is indicated in the 'TypeVersion' element of the SBDH. Thus, it is
possible to send in one message only documents of the same type (only
invoices, only orders, etc) of the same major version. The minor versions of
those documents can be different, as they are compatible within the same
major version.

 20

6 CONTEXT

Business messages are always used in business domains and processes
under certain real-world circumstances. There are many similarities and also
many differences between them. EAN.UCC schemas are based on
vocabulary of components that represent those common and different
circumstances. To manage this complexity, a concept of business context has
been introduced. It reflects the circumstances in which the business
information exchange occurs.

An example can be a trade item description. There are certain attributes valid
for every type of product, e.g. brand name, identification number, etc.
However, the pharmaceutical industry needs certain specific attributes,
different from the automotive and textile sectors. Thus, those different
attributes are context-specific, while the context in this case is the industry
sector, determining certain information needs. The common attributes are
context-independent.

6.1 CONTEXT CATEGORIES

The context in which the business collaboration takes place can be specified
by a set of categories and their associated values. There are 8 categories in
total, but in EAN.UCC XML messages currently only three of them are used:

- Business Process, in which collaboration takes place, e.g. ordering,
delivery, etc.

- Industry Sector, in which the business partners are involved, e.g.
FMCG, Hardlines, etc.

- Geopolitical, reflecting the geographical factors that influence the
business semantics, it can be either country-specific, e.g. only for
France or Sweden, limited to certain economic regions, e.g. NAFTA,
European Union, and finally, it can be applicable everywhere in the
world – in this case the context is defined as Global

Other categories can be introduced according to needs, in further releases of
the EAN.UCC XML standards.

Components that can be used in the entire context category, across all its
values, has an implied value 'In All Contexts'. In this case, the value is
omitted, for clarity.

Some components can be associated with more than one context category
value, e.g. 'Pharmaceutical and Metallurgical'.

6.2 REPRESENTING CONTEXT IN EAN.UCC XML STANDARDS

In general context is a non-hierarchical concept since all categories are at the
same level of importance. However, in the XML schemas hierarchy has been
introduced in order to facilitate context management.

The hierarchy order starts with the Business Process Category, followed by

 21

the Industry Sector and then the Geopolitical Category.

The hierarchy of context categories used in EAN.UCC XML schemas

In the schemas, context is represented in namespaces.

7 CODE LISTS

There are two types of code lists in EAN.UCC XML messages: external and
internal ones.

7.1 EXTERNAL CODE LISTS

External code lists are defined and maintained outside the GS1 community,
usually by other standard bodies, e.g. ISO. Their examples are:

- Country Codes - ISO 3166-1:1997, defined in Country.xsd schema, as
the ISO3166_1CodeType

- Country Subdivision Codes - ISO 3166-2:1998, defined in Country.xsd
schema, as the ISO3166_2CodeType

- Currency Codes - ISO 4217:2001, defined in MonetaryAmount.xsd
schema, as the CurrencyISOCodeType

All of them are defined as a part of the common library. They are defined as
strings restricted to an appropriate number of characters, but do not contain
the code list values. The reason behind this decision is that enumerating the
lists content would cause problems with their maintenance, which is done
outside of the EAN.UCC System and would breach the copyright ownership.

The users are advised to consult the website of the International Standard
Organisation www.iso.org to check how the lists can be acquired and used.

7.2 INTERNAL CODE LISTS

Internal code lists are those developed and maintained within the EAN.UCC
System. Starting from release 2.0, those code lists are defined in separate
schemas and are no longer embedded in the common library schemas. This
practice requires giving up some advantages, mainly the ability for parsers to
enforce strict validation. In other words, the code list embedded within the
schema cannot be changed, without affecting the validation process. On the
contrary, if a code list is only referenced in the given schema and defined

Business Process

Industry Sector

Geopolitical

 22

externally, various versions of that code list can be used as a base for
validation.

On the other hand, this ensures that any change to a code list schema does
not trigger a new release of the entire set of EAN.UCC schemas, which would
require additional upgrades for the users. Defining code lists outside of the
main schema document allows upgrading lists as soon as business demand
arises and facilitates version management.

Code lists are defined as xsd:enumeration. The lists are included or imported
into the schema document, which uses it.

Advantages for implementers of this approach include reduced maintenance
costs, faster implementation of list changes, reduced versions of schemas and
simpler publications. In addition, the handling of code lists is consistent with
the new, similar handling of components.

7.2.1 INTERNAL CODE LISTS IN CONTEXT

Code list schemas follow the same principles as all the other EAN.UCC
schemas, with respect to namespaces. If a given code list is used across
different contexts, it is defined within the common library namespace, e.g.
TimePeriodList.xsd or AllowanceChargeList.xsd.

Code lists used just in one context are defined in the namespace of the
schema document that uses them. For example,
ReplenishmentRequestStatusList.xsd and CollaborationPriorityCodelist.xsd
are defined in the Plan namespace (xmlns:plan="urn:ean.ucc:plan:2").

This approach ensures backward compatibility. Due to the fact that the minor
versions are not reflected in the namespace of a schema, instance documents
can be validated against the older minor schema. In addition, any schemas
that ‘include’ this schema do not need to change because the target
namespace of the included components is the same as the target namespace
of the including schema.

7.2.2 INTERNAL CODE LIST VERSIONING

Each code list is defined in its own schema file, which is versioned separately.
When a change is made to a code list schema, it is versioned in the same way
as any other component. When new code definitions are approved by the
respective Business Requirements Group (BRG), the code list schema is
updated and the minor version number within the code list schema is
incremented. This allows users to have access to the codes in the most
efficient manner.

Addition of code values constitutes a minor version change. If a code deletion
or modification of definition is necessary, it will only be implemented under a
major version change.

 23

8 XML BUILT-IN TYPES

The XML standard developed by the World Wide Web Consortium (W3C) lists
44 data types that are embedded in the specification. This means that these
data types can be used in XML schemas with no need to define them. These
data types should be implicitly understood by all the XML-aware software
tools. The built-in data types have certain standard facets to represent them in
the schema or to restrict their range.

In EAN.UCC standards, only a subset of the built-in types is used. Some of
the W3C data types have different representation in the Business Message
Standards than the standard one used in the schema. This difference is due
to the fact that the BMS contains a UML representation of the business
document, which is meant to be independent from the syntax to which it will
finally be mapped.

The list of W3C data types used in EAN.UCC standards, together with their
representation in the schema and the BMS is presented below:

W3C Data Type W3C XSD EAN.UCC BMS Data
Type

string AN
String

boolean true/false
1/0

Y/N

decimal totalDigits=5
fractionDigits=3

Numeric 5,3

integer totalDigits=5 Number 5
nonNegativeInteger totalDigits=5 Number 5
float
dateTime ISO 8601

Year:
 YYYY (e.g. 1997)
Year and month:
 YYYY-MM (e.g. 1997-07)
Complete date:
 YYYY-MM-DD (e.g. 1997-07-16)
Complete date plus hours and minutes:
 YYYY-MM-DDThh:mmTZD (e.g.
1997-07-16T19:20+01:00)
Complete date plus hours, minutes and
seconds:
 YYYY-MM-DDThh:mm:ssTZD (e.g.
1997-07-16T19:20:30+01:00)
Complete date plus hours, minutes,
seconds and a decimal fraction of a
second
 YYYY-MM-DDThh:mm:ss.sTZD
(e.g. 1997-07-16T19:20:30.45+01:00)
where:
 YYYY = four-digit year
 MM = two-digit month (01=January,

CCYYMMDDThh:mm:ss

 24

etc.)
 DD = two-digit day of month (01
through 31)
 hh = two digits of hour (00 through
23) (am/pm NOT allowed)
 mm = two digits of minute (00
through 59)
 ss = two digits of second (00
through 59)
 s = one or more digits
representing a decimal fraction of a
second
 TZD = time zone designator (Z or
+hh:mm or -hh:mm)

time ISO 8601 – structures related to time:
hh:mm:ss.s – explanations and
examples – see dateTime

hh:mm:ss

date ISO 8601 ISO 8601 – structures related
to date:
YYYY-MM-DD – explanations and
examples – see dateTime

CCYYMMDD

W3C data types currently not used by EAN.UCC:

� normalizedString
� token
� Name
� NCName
� ID
� IDREF
� IDREFS
� ENTITY
� ENTITIES
� NMTOKEN
� NMTOKENS
� nonPositiveInteger

� negativeInteger
� long
� language
� int
� short
� byte
� unsignedLong
� unsignedInt
� unsignedShort
� unsignedByte
� positiveInteger
� double

� duration
� gYearMonth
� gYear
� gMonthDay
� gDay
� gMonth
� hexBinary
� Base64Binary
� anyURI
� QName
� NOTATION

8.1 HANDLING DATE AND TIME

For data elements where time is required, two built-in data-types are used
within EAN.UCC XML standards: 'dateTime' and 'time'. The value space of
‘time’ and ‘dateTime’ XSD data types is defined in article 5.3 of ISO 8601, the
details can be found at the following links:

http://www.w3.org/TR/xmlschema-2/#time
http://www.w3.org/TR/xmlschema-2/#dateTime

As per the value space of ‘time’ and ‘dateTime’, additional fractional seconds
(milliseconds) and Time zone information can specified.

 25

8.1.1 USE OF MILLISECONDS

Both ‘time’ and ‘dateTime’ data types allow use of additional digits increasing
the precision of fractional seconds if desired, in the format ss.s.

‘ss.s’ denotes two digits of second (00 through 59) followed by one or more
digits representing a decimal fraction of a second (milliseconds). The
fractional seconds part is separated from the two digits of second by the use
of a ‘dot’ as a separator.

Though any number of digits for the fractional seconds is supported, only 3
precision digits should be used within EAN.UCC XML messages to denote the
milliseconds.

Example 1

The following values are true for the attribute 'creationDate' which is of type
XSD 'dateTime' in all versions of EAN.UCC XML Standards.

- creationDate="2003-03-22T09:30:47"
The example above indicates 47 seconds and 0 milliseconds.

- creationDate="2003-03-22T09:30:47.0"
The example above indicates 47 seconds and 0 milliseconds and is
equivalent to example 1 from above.

- creationDate="2003-03-22T09:30:47.233"
The example above indicates 47 seconds and 233 milliseconds.

8.1.2 USE OF TIME ZONES

Both ‘time’ and ‘dateTime’ data types allow specifying the time zone, following
the time information. The time zone information for non-UTC times within
EAN.UCC System must be expressed by specifying the difference between
the local time and UTC. This is indicated by immediately following the time
representation by a sign, + or -, followed by the difference from UTC
represented as hh:mm (note: the minutes part is required).

Example 2

- creationDate="2003-03-22T09:30:47.233-05:00"
The example above indicates Eastern Time (ET), which is 5 hours
behind UTC.

- creationDate="2004-11-06T12:43:17.000+09:00"
The example above indicates Tokyo Time, which is 9 hours ahead
of UTC.

Example 3

A composite example of the XSD data type ‘dateTime’ following the above
mentioned guidelines:

 26

- creationDate="2003-03-22T09:30:47.233-05:00"
where:

- ‘2003’ denotes the year
- ‘03’ denotes the month
- ‘22’ denotes the day
- ‘T’ denotes the time separator
- ‘09’ denotes the hours
- ‘30’ denotes the minutes
- ‘47’ denotes the seconds
- ‘.’ denotes the fractional seconds separator
- ‘233’ denotes the fractional seconds (milliseconds)
- ‘-’ denotes the time zone offset indicator indicating ‘behind UTC’
- ‘05’ denotes the hours
- ‘:’ denotes the minutes separator and ‘00’ is the minutes

9 STANDARD BUSINESS DOCUMENT HEADER

The Standard Business Document Header (SBDH) replaces the Envelope
layer including the AS2 Message Header, used in previous EAN.UCC XML
standards releases. The SBDH provides information about the routing and
processing of the XML instance document. The SBDH is designed to be
independent of the specific transport protocol used. The information contained
in the SBDH can be used by communication applications to determine routing
whether the transport protocol used is ebMS, AS2, or any other protocol.

The SBDH can also optionally provide business scope and business service
information. In EAN.UCC schemas, the SBDH is designed to be an integral
part of the XML instance document (in other standards, the SBDH may be an
object associated with the XML instance document).

The SBDH schema contains an element specifying the version number of the
document or documents contained. For more details on how to use this data
element, please refer to Version numbers in the business documents and the
Standard Business Document Header.

The detailed UN/CEFACT specification for the SBDH and the guidelines on
how to use it can be downloaded from the GS1 website.

10 MESSAGE LAYER

The message layer defines actions that should be performed on the specific
document or documents by the receiving application. Those tasks are defined
as commands.

Use of this layer allows a reduction in the number of documents needed to
perform an efficient exchange of business information. The same document
can be used with different commands. Hence, no separate documents like
‘Add Order, ‘Change Order’ or ‘Delete Order’ are needed. The same ‘Order’
document can be sent with a relevant command, e.g. ‘add’, ‘change’ or
‘delete’.

 27

In a similar way, several documents can reuse the same commands, so
adding the new commands when such a need is identified, is quick and easy,
with no need to make any change to the other document schemas. The
component that needs to be added then is a new item in the
‘documentCommandListType’, defining the type of action that should be
performed on the corresponding documents by the receiving end.

The Message layer contains three main components:

- transaction
- command
- interface to the Document Layer

The Message layer is linked to the Header layer by the ‘message’ component,
introduced in version 2.0.2 of the EAN.UCC XML Standards. It acts simply as
a placeholder allowing for appending multiple transactions in one header.

The ‘message’ component is identified by the entity identification, and
contains a placeholder where the transaction component can be inserted. This
placeholder has a form of the XML schema '##any' element. It can have
multiple occurrence, so that many transactions can be appended.

The ‘message component structure

The XML 'any' element has a built-in attribute: processContents indicating
how an XML processor should handle the validation of XML documents
against the elements specified by the 'any' element. In the message
component, the value of this attribute is set to ‘strict’, it means that the XML
processor must obtain the schema for the required namespaces and validate
any element from those namespaces.

 28

Message layer overview

Each message sent can contain several transactions and every transaction
can hold multiple commands concerning one or more documents. This
architecture allows great flexibility of business information exchange.

10.1 TRANSACTION

10.1.1 TRANSACTION STRUCTURE

A transaction provides functionality of submitting multiple commands
simultaneously. It allows the users to process the group of messages
together. If one of them fails, all of them may then be discarded.

Transaction elements

The Transaction schema contains two main components:

1. Identification of the transaction - a component called entity
identification, consisting of:

Message

Transaction (ID)

Command = command 1

Document 2
Document

layer

Command = command 2

Document 1

Document 4
Document 3

Document A
Document B
Document C

Document
layer

Message
layer

Command
layer

Transaction
layer

 29

a. the party that created the set of commands
b. a unique identifier assigned by that party

-
The entity identification structure

2. The commands themselves. The ‘command’ element is a container,
where one or multiple commands that form one transaction can be
inserted

The number of commands in one transaction is unlimited from the XML syntax
point of view, however, it is limited by the bandwidth and application
processing capabilities. All messages sent in one transaction should be of the
same type, e.g. only Orders or Invoices.

10.1.2 TRANSACTION FUNCTIONALITY

Transaction applies the principle of 'all or nothing'. If one of the documents in
a transaction is not valid, then all of them are rejected.

The transaction element can be considered as a flag indicating that if some of
the documents nested within it fail the validation, the processing of all the
remaining ones should stop. Obviously, this functionality has to be pre-
programmed into the processing application. It is important to note that this
relates only to technical level validation, it does not cover the business level
validation, since it is not possible to verify the conformance to the business
rules at the moment of 'unwrapping' the transaction layer.

The technical validation checks if the tag names, order and data field format
are inconsistent with the schema. For example, the GTIN is defined in the
schema as strictly 14 digits long, therefore, if in the instance file it has 13 or 15
digits, the document fails the technical validation. On the contrary, if the check
digit in the GTIN is not correct, the file will still be considered as valid, as this
information can only be verified at the business application level.
In the same way the cardinality of components is checked – if a mandatory
component is missing, the file will not be valid, but if the given component had
been defined as optional, the file will be valid, even if from business point of
view the information should be present, the file will still be technically valid and
the full transaction content will be accepted.

Example 1
A sender needs to send two TradeItem messages, one for GTIN 1, the
second for GTIN 2. The product 1 is related to product 2. Instead of sending
them separately, in two distinct transmissions, he can transmit them together
in one transaction:

 30

Both documents have to be correct (valid), otherwise both will be rejected.

Example 2
A sender needs to send three new TradeItem messages to a customer and
amend two other TradeItem descriptions, which had been sent earlier. All five
TradeItem documents can be sent together in one message – three with a
command ADD and two with a command CHANGE BY REFRESH. Both
commands could be inserted in one transaction, but since the new TradeItem
messages are not related to the amended ones, they can be placed in two
separate transactions, sent in one message:

Message

Transaction (ID)

Command = Add

Item GTIN 2
Item GTIN 1

Message

Transaction 1

Command = Add

Command =

Change By Refresh

Item GTIN 1

Item GTIN 2

Item GTIN 3

Item GTIN 4

Item GTIN 5

Transaction 2

 31

If any of the first three messages (TradeItem for GTIN 1, 2 or 3) is not valid, all
three will be rejected but the messages from the second transaction
(TradeItem for GTIN 4 and 5) will still be processed.

Example 3
A sender needs to send three new TradeItem messages to a customer and
cancel one sent previously. Those messages are not interrelated and even if
one of them fails, the sender wants to maintain the other as valid ones. All
four messages are sent in one transmission, three with a command ADD and
one with a command DELETE, but without the transaction layer:

If any of those messages (TradeItem for GTIN 1, 2, 3 or cancellation of
TradeItem for GTIN 4) are not valid, the other ones will still be processed.

10.2 COMMAND

Commands are used by a trading partner to instruct the receiving application
about an action that should be performed on a given document. All commands
are transitive and are discarded after executing the task.

Some of the actions to be performed are defined by the command itself, while
other ones by an attribute of the command.

The ‘command’ is an abstract element, extended by the following elements:
‘documentCommand’
‘documentIdentificationCommand’
‘linkCommand`

The Command Type structure

The substituting elements are defined in DocumentCommand.xsd,
DocumentIdentificationCommand.xsd and LinkCommand.xsd.

Message

Command = Add

Item GTIN 2
Item GTIN 1

Item GTIN 3

Command = Delete
Item GTIN 4

 32

10.2.1 DOCUMENT COMMAND

The Document Command is used to instruct the recipient of that command to
perform a particular action related to the documents within the command. The
document in question has to be present, i.e. it must be sent together with the
command. The actions, which can be performed on it include:

- ‘Add’
- ‘Refresh’
- ‘Correct’
- ‘Delete’

The Document Command is an extension of the abstract Command. It
contains two main components: the ‘documentCommandHeader’ and
‘documentCommandOperand’:

The Document Command structure

The ‘documentCommandHeader’ specifies the action that should be
performed on the given document. Those tasks, defined as the required
attribute of the header element, include:

ADD – the receiving application is instructed to store the

document or documents
CHANGE_BY_REFRESH – the receiving application is instructed to update

the existing document or documents, by total
replacement

CORRECT – the receiving application is instructed to update
the existing document or documents, by total
replacement, skipping certain business specific
validation rules. The syntactical and content
validation rules still apply. This command is used
in cases where the specific validation rules would
otherwise prevent the application from changing
data. It can be used only if the correction does not
impact the integrity of the corrected data.
Otherwise, correction should be performed by
sending two commands: DELETE (with the old
document) and ADD (with the new document) in
one transaction.

DELETE – the receiving application is instructed to delete
the document or documents

The ‘documentCommandOperand’ contains an abstract 'document' element
that can be extended by the actual business document elements, defined in

 33

the business message schemas. Those are the documents upon which one of
the actions defined in the header element should be performed.

The Document Command Operand structure

The list of the possible documents contains all the business messages
defined within the given major version.

10.2.2 DOCUMENT IDENTIFICATION COMMAND

This is an extension of the abstract Command, defining operations that
require just an identification of the relevant documents. The only operation
currently supported by this method is DELETE, defined as a value of an
attribute of the ‘documentIdentificationCommand’ element.

 The Document Identification Command structure

The document on which the action should be performed is identified in the
‘documentIdentifierList’ element.

The Document Identifier structure

It can be specified in three ways:

1. By ‘partyIdentification’ – using GLN and optionally, an additional
identifier of the concerned party.

2. By ‘tradeItemIdentification’ – using GTIN and optionally, an additional
identifier of the trade item concerned by the document in question.

3. By ‘entityIdentification’ - a combination of the unique document
identifier assigned by its creator and the unique identification of that
document creator (GLN and optionally, an additional identifier).

 34

10.2.3 LINK COMMAND

- This type of command allows to establish parent-child or peer
relationships between several entities.

The Link Command consists of two major components: Link Header and Link
Operand.

The Link Command structure

10.2.3.1 Link Header

The ‘linkCommandHeader’ specifies whether the function of the command is
to link or unlink the documents concerned. They are defined as the
enumeration values: LINK and UNLINK of the element’s attribute
‘LinkCommandListType’.

The Link Command Header structure

The header contains also the unique command identifier assigned by its
creator, combined with the creator’s identification (GLN and optionally, an
additional one).

10.2.3.2 Link Operand

The ‘linkCommandOperand’ specifies the parent and children, identified by a
document identifier.

The Link Command Operand structure

The term document here can be identified in three ways:

- by Entity Identification
- by Party Identification
- by Trade Item Identification

 35

The Document Identifier structure

The first document identifier occurring in the sequence of Link Command
Operand sub elements, defines the parent object.

The children objects can be identified using either a Hierarchy List or
Associated Document List method.

The child or associated element structure

The ’hierarchyList’ element allows to make a list of child documents, with just
one document per child. By using this method it is also possible to specify the
quantity of each child.

The child element structure

Therefore, the Hierarchy List can be used to specify the number of lower
items in a packaging unit and the content of mixed containers.

The ‘associatedDocumentList’ allows to link some documents to a given
parent.

The associated document list element structure

Within both parent and child elements, there is a choice of the components

 36

that are meant to be linked or unlinked. It can be ‘partyIdentification’, defining
the trading partner that is to be linked to given information. The second option
is the ‘tradeItemIdentification’, defining the product to be linked. The last
possibility is to specify the document, using the ‘entityIdentification’.

10.2.3.3 Link Command functionality

As mentioned before, the ‘LinkCommand’ purpose is to create a parent – child
relationship between parties, trade items and other entities, e.g. documents.
The parent and children are identified by the ‘partyIdentification’,
‘tradeItemIdentification’, or ‘entityIdentification’, depending on the nature of the
linked entities. Although they are all referred to as the ‘documentIdentifier’,
their use is not restricted to documents.

Example 1

A store may receive various items via different distribution centres. In order to
specify where the goods are being delivered, the supplier can use the
LinkCommand to link products identified by ‘tradeItemIdentification’ to a
specific location identified by ‘partyIdentification’.

The purpose of this command is to make a link between components,
therefore the value of the attribute of the ‘linkCommandHeader’ element is
LINK. The first occurrence of the ‘documentIdentifier’ element within the
‘linkCommandOperand’ identifies the parent of the linked components, so the
‘partyIdentification’ element has as a value the GLN of the given distribution
centre. The child components are the GTINs of the given items. Since the
quantity of the items is not important in this case, the items are specified in the
‘associatedDocumentList’.

The instance of the Link Command establishing a relationship between a
location and trade items

Note that the actual business message, e.g. Despatch Advice, is not attached
to this command. The link created is independent of any changes of business

 37

documents. When the relationship is no longer valid, the same command with
the attribute UNLINK can be sent to announce this fact.

11 DOCUMENT LAYER

Document layer contains the actual business documents. This layer is fully
documented in EAN.UCC Business Message Standards.

11.1 PROXY FILES

Functionally, a business document is a part of the messaging architecture,
which requires the presence of other layers – the Standard Business
Document Header, transaction and command.

Some parsers (e.g. Xerces versions earlier than 2.0) do not support multiple
schema locations in the instance file. In order to facilitate the process of
creating valid XML messages, integrated into the whole architecture, the
proxy schemas have been created for each business document that include
and import all the required files. The proxy schemas are non-normative; they
are created only to support implementation of the EAN.UCC XML standards.
An example of a proxy schema file for the Request For Payment message
follows:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:ean.ucc:2"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:import namespace="urn:ean.ucc:pay:2"
schemaLocation="RequestForPayment.xsd"/>
<xsd:include schemaLocation="DocumentCommand.xsd"/>
<xsd:include schemaLocation="AllowanceCharge.xsd"/>
<xsd:include schemaLocation="PaymentTerms.xsd"/>
<xsd:include schemaLocation="TradeItemIdentification.xsd"/>
<xsd:include schemaLocation="Transaction.xsd"/>
</xsd:schema>

In the instance document these multiple file names must be replaced with the
single proxy file name. If this file is specified using the 'xsi:schemaLocation'
attribute, the parser is able to validate the XML instance document. An
excerpt of a sample xml instance file referring to a proxy schema follows:
<?xml version="1.0" encoding="UTF-8"?>
<!-- This is a sample file-->
<sh:StandardBusinessDocument
xmlns:sh="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader
"xmlns:eanucc="urn:ean.ucc:2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.unece.org/cefact/namespaces/
StandardBusinessDocumentHeader StandardBusinessDocumentHeader.xsd
urn:ean.ucc:2 RequestForPaymentProxy.xsd" xmlns:pay="urn:ean.ucc:pay:2">

11.2 BUSINESS DOCUMENTS

The business documents are organised by their respective business
processes. Each business document requires all the included and imported
files to be present for the successful validation. Each Implementers Packet for
every message contains a text file called Table of Content, listing all the files

 38

that have been used to create a given business message schema and are
necessary for the business document validation.

11.3 COMMON LIBRARY

In design of each business document, some components defined in the
common library are used. The common library contains all the files that may
be used in more than one business document and more than one context.

The components that are used only within one context, are defined within the
namespace of that particular context. Finally, components that are not used in
other messages are defined locally within the business message schema.

This approach allows reusing the same information constructs in all business
messages, increases interoperability and simplifies schema maintenance.

In previous EAN.UCC XML standards releases (1.1, 1.3 and 1.3.1), the
common library components had no separate namespace. They took on the
namespace of the schema documents in which they were used. This means
that a change to the common library affected not just the rest of the common
library, but also the business documents.

Common library schema documents follow the same versioning strategy as all
other schema documents. Starting from version 2.0, the common library files
have their own target namespace: xmlns:eanucc="urn:ean.ucc:2". This
namespace includes only the major version but not the minor one, and only
backward compatible changes are made in minor versions. Like other
schema documents, they use the version attribute on the xsd:schema element
to indicate the minor version number.

Common library schema documents have namespaces separate from the
business documents that use them, so that they can be versioned separately.
Therefore, a change in any of those components is reflected only in the
version of those documents where this component is used, not in the whole
release.

However, when the common library changes to a new major version, all
business documents that use the library change to the new version as well.

12 EXTENSION MECHANISM

12.1 GENERAL EXTENSION COMPONENT

Beginning from release 2.0, every business document schema contains a
placeholder where some additional, context-specific components can be
inserted. This placeholder has a form of the XML schema '##any' element.

 39

The structure of the Extension component

The XML 'any' element has a built-in attribute: processContents. It acts as an
indicator of how an application or XML processor should handle the validation
of XML documents against the elements specified by the 'any' element. In the
EAN.UCC extension component, the value of this attribute is set to 'lax', it
means that the XML processor attempts to obtain the schema for the required
namespaces and validate any element from those namespaces, but if the
schema cannot be obtained, no errors will occur.

12.1.1 VALIDATION OF THE EXTENSION COMPONENTS

Although the XML syntax rules for the 'any' element allow any well-formed
XML to be placed within the instance file, the users must remember that their
business partners will not be able to validate the non-standard information.
The message recipient must be provided with the relevant schema validating
the extended part of the message. It is recommended to use only the
extension attributes approved within the GSMP process. Otherwise, the
messages will not be standard and globally interoperable.

However, because the processContents attribute is set to 'lax', the validation
of the extension element is optional: an XML schema parser will validate
elements for which it can find declarations (extension schemas) and raise
errors if they are invalid. If it does not find context specific schemas for a
certain set of context specific elements, the parser will not report errors for
those elements. The placeholder is an optional element of the root element.

12.1.2 QUALIFICATION OF THE EXTENSION COMPONENTS

All the components placed within the extension element are specific to certain
context, thus they belong to the context-specific namespace, which has its
own namespace prefix assigned. Those context-specific extension schema
modules should have the 'elementFormDefault' and 'attributeFormDefault'
attributes set to qualified. This way they will be prefixed and easily
recognisable in the instance document.

13 XML TOOLS

There is a large choice of tools available on the market: from the simple, web
based and free validators, through Integrated Development Environments,
combining in one package the validator, parser, documentation generator,
repository interface, scripting, transformation of XML documents to other
formats and many other features.

Obviously, the more sophisticated products tend to be more expensive and
the beginning user may either not need all the above mentioned features or
does not know from the start which functionalities could be useful and worth
paying for. There is a wide range of free of charge software tools for XML
processing, which may be helpful in building the understanding of XML
standards and beginning their use. A quite comprehensive list can be found at

 40

the following links: http://www.garshol.priv.no/download/xmltools/ or the list
maintained by W3C: http://www.w3.org/XML/Schema#Tools.

For searching the internet for the available XML software, the following key
words may be helpful:

- 'XML tools'
- 'XML parser'
- 'XML validator'
- 'XML integrated development environment'
- 'XSLT editor'
- 'XSLT generator'
- 'XSLT engine'

There is also a special tool available, helping the business experts and
analysts, developers and implementers to understand, visualise and analyse
the structure of the EAN.UCC Data Models and XML Artefacts: EAN.UCC
Schemas Reader - specialized standards and data models reader. Link:
http://www.gefeg.com/en/edifix/reader-eanucc.html

For companies that need to decide which tools they should choose to be able
to implement the EAN.UCC standards, the Checklist for Solution Providers
should be helpful.

The EAN.UCC schemas and sample files are tested using the latest versions
of the following validators:

- XML Schema Validator (XSV)
- XMLSpy (version 4.4 or higher) from Altova
- Xerces (version 2.6.2) from Apache

14 CHECKLIST FOR SOLUTION PROVIDERS

Before purchasing a product to support EAN.UCC messages, users should
make sure that the standard is sufficiently supported. The questions
presented below should help in this evaluation.

1. Does your product support EAN.UCC XML schemas?

2. What version or versions of EAN.UCC XML schemas does your product
support?

3. Once EAN.UCC releases a new version of the standard, how quickly does
your product support this new version?

4. How does your product handle multiple versions of EAN.UCC standards?

5. Does your company participate in the EAN.UCC Global Standards
Management Process (GSMP)? If so, in what capacity?

6. Explain how your product imports EAN.UCC schema.

 41

7. Can your product generate XML instance documents based on the
imported schema?

8. What different ways does your product have to display EAN.UCC schema
and XML?

9. Does your product support editing EAN.UCC XML messages, validation of
messages, or both editing and validation?

10. How does your editing/validation tool work with EAN.UCC XML messages
to ensure data conforms to the standard?

11. When XML is being validated against EAN.UCC schema, how efficient is
this process?

12. Can validation be enabled/disabled by trading partner and/or message?
How is this done?

13. How easily does your product map from EAN.UCC messages to other
formats (e.g., user-defined record layouts, other XML formats)? Please
explain how your mapping tool works.

14. Do you have clients who use your product to exchange and translate
EAN.UCC messages? How many and with which messages?

15. If you have clients using your product with EAN.UCC messages, please
provide a client list including contact references.

16. Please explain your product support structure. Is there support staff
knowledgeable in EAN.UCC messaging?

17. Does your product allow for dynamically validating XML payload using
EAN.UCC schemas residing outside the firewall?

18. Does your product support the W3C Recommendations for XML
Schemas?

19. Does your product support <<include>> of schemas from multiple
locations and <<import>> from multiple namespaces?

 42

APPENDIX: MAJOR CHANGES OF DESIGN BETWEEN RELEASE 1.3.1
AND 2.0

1. Use of namespaces:
a. Separate namespaces for different context
b. Major versions reflected in the namespace

2. New versioning strategy
a. Backward compatible changes reflected in minor versions
b. Not compatible changes reflected in major versions

3. Envelope layer replaced by the Standard Business Document Header

4. New code lists management

a. Each code list defined in the separate schema
b. Each code list versioned separately (life cycle separation)
c. Adding new codes does not require upgrade of the whole

message suite

5. New extension mechanism
a. New extension component introduced in all business documents

schemas
b. xsi:type no longer used

6. New way of managing the Common Library – each common

component schema is independent of changes in the rest of the
release

7. GTIN and GLN are used as mandatory primary identifiers for Trade
Item and Party identification respectively.

